Антибиотики применяются только по назначению врача. Не занимайтесь самолечением!

Классификация антибиотиков по спектру действия


Классификация антибиотиков типу действия

» Лечение антибиотиками

Классификация антибиотиков по химической структуре, механизму, спектру и типу действия.

Антибиотики — химиотерапевтические вещества, продуцируемые микроорганизмами, животными клетками, растениями, а также их производные и синтетические продукты, которые обладают избирательной спо­собностью угнетать и задерживать рост микроорганизмов, а также подавлять развитие злокачественных новообразований.

За тот период, который прошел со времени открытия П.Эрлиха, было получено более 10 000 различных антибиотиков, по­этому важной проблемой являлась систематизация этих препа­ратов. В настоящее время существуют различные классификации антибиотиков, однако ни одна из них не является общеприня­той.

В основу главной классификации антибиотиков положено их химическое строение.

Наиболее важными классами синтетических антибиотиков яв­ляются хинолоны и фторхинолоны (например, ципрофлоксацин), сульфаниламиды (сульфадиметоксин), имидазолы (метронидазол), нитрофураны (фурадонин, фурагин).

По спектру действия антибиотики делят на пять групп в зави­симости от того, на какие микроорганизмы они оказывают воз­действие. Кроме того, существуют противоопухолевые антибио­тики, продуцентами которых также являются актиномицеты. Каж­дая из этих групп включает две подгруппы: антибиотики широ­кого и узкого спектра действия.

Антибактериальные антибиотики составляют самую многочисленную группу препаратов. Преобладают в ней антиби­отики широкого спектра действия, оказывающие влияние на представителей всех трех отделов бактерий. К антибиотикам широкого спектра действия относятся аминогликозиды, тетрациклины и др. Антибиотики узкого спектра действия эффектив­ны в отношении небольшого круга бактерий, например полет-миксины действуют на грациликутные, ванкомицин влияет на грамположительные бактерии.

В отдельные группы выделяют противотуберкулезные, противолепрозные, противосифилитические препараты.

Противогрибковые антибиотики включают значитель­но меньшее число препаратов. Широким спектром действия об­ладает, например, амфотерицин В, эффективный при кандидозах, бластомикозах, аспергиллезах; в то же время нистатин, дей­ствующий на грибы рода Candida, является антибиотиком узко­го спектра действия.

Антипротозойные и антивирусные антибиотики на­считывают небольшое число препаратов.

Противоопухолевые антибиотики представлены препара­тами, обладающими цитотоксическим действием. Большинство из них применяют при многих видах опухолей, например митоми-цин С.

Действие антибиотиков на микроорганизмы связано с их спо­собностью подавлять те или иные биохимические реакции, про­исходящие в микробной клетке.

В зависимости от механизма дей­ствия различают пять групп антибиотиков:

1. антибиотики, нарушающие синтез клеточной стенки. К этой группе относятся, например, #946;-лактамы. Препараты этой груп­пы характеризуются самой высокой избирательностью дей­ствия: они убивают бактерии и не оказывают влияния на клет­ки микроорганизма, так как последние не имеют главного компонента клеточной стенки бактерий — пептидогликана. В связи с этим #946; -лактамные антибиотики являются наименее токсичными для макроорганизма;

2. антибиотики, нарушающие молекулярную организацию и синтез клеточных мембран. Примерами подоб­ных препаратов являются полимиксины, полиены;

3. антибиотики, нарушающие синтез белка; это наиболее многочисленная группа препаратов. Представителями этой группы являются аминогликозиды, тетрациклины, макроли-ды, левомицетин, вызывающие нарушение синтеза белка на разных уровнях;

4. антибиотики — ингибиторы синтеза нуклеиновых кислот. Например, хинолоны нарушают синтез ДНК, рифампицин — синтез РНК;

5. антибиотики, подавляющие синтез пуринов и аминокислот. К этой группе относятся, например, сульфаниламиды.

Классификация антибиотиков по химической структуре

• макролиды (и азалиды)

• разные антибиотики (фузидиевая кислота, фузафунжин и др.)

Бета-лактамы. Основу молекулы составляет бета-лактамное кольцо, при разрушении которого препараты теряют свою активность; тип действия — бактерицидный. Антибиотики этой группы подразделяют на пенициллины, цефалоспорины, карбапенемы и монобактамы.

Пенициллины. Природный препарат - бензилпенициллин (пенициллин G) активен против грамположительных бактерий, однако имеет много недостатков: быстро выводится из организма, разрушается в кислой среде желудка, инактивируется пенициллиназами - бактериальными ферментами, разрушающими бета-лактамное кольцо. Полусинтетические пенициллины, полученные путем присоединения к основе природного пенициллина - 6-аминопенициллановой кислоте - различных радикалов, имеют преимущества перед природным препаратом, в том числе широкий спектр действия:

· депо-препараты (бициллин), действует около 4 недель (создает депо в мышцах), применяется для лечения сифилиса, профилактики рецидивов ревматизма;

· кислотоустойчивые (феноксиметилпенициллин), для перорального приема;

· пенициллиназоустойчивые (метициллин, оксациллин), но у них довольно узкий спектр;

· широкого спектра (ампициллин, амоксициллин),

· комбинированные (амоксициллин+клавулановая кислота, ампициллин+сульбактам). В состав этих препаратов включены ингибиторы ферментов - бета-лактамаз (клавулановая кислота и др.), которые тоже содержат в своей молекуле бета-лактамное кольцо; их противомикробная активность очень низка, но они легко связываются с этими ферментами, ингибируют их и таким образом защищают молекулу антибиотика от разрушения.

Цефалоспорины. Спектр действия широкий, но более активны в отношении грамотрицательных бактерий. По последовательности внедрения различают 4 поколения (генерации) препаратов, которые отличаются по спектрам активности, устойчивости к бета-лактамазам и некоторым фармакологическим свойствам, поэтому препараты одного поколения не заменяют препараты другого поколения, а дополняют.

• 1-е поколение (цефазолин, цефалотин и др.) — более активны в отношении грамположительных бактерий, разрушаются бета-лактамазами;

• 2-е поколение (цефуроксим, цефаклор и др.) — более активны в отношении грамотрицательных бактерий, более устойчивы к бета-лактамазам;

• 3-е поколение (цефотаксим, цефтазидим и др.) - более активны в отношении грамотрицательных бактерий, высоко резистентны к действию бета-лактамаз;

• 4-е поколение (цефепим и др.) — действуют в основном на грамположительные, некоторые грамотрицательные бактерии и синегнойную палочку, резистентны к действию бета-лактамаз.

Карбапенемы (имипенем и др.) — из всех бета-лактамов имеют самый широкий спектр действия и резистентны к бета-лактамазам.

Монобактамы (азтреонам и др.) — резистентны к бета-лактамазам. Спектр действия узкий (очень активны против грамотрицательных бактерий, в том числе против синегнойной палочки).

ГЛИКОПЕПТИДЫ (ванкомицин и тейкопланин) — это крупные молекулы, которым трудно пройти через поры грамотрицательных бактерий. Вследствие этого спектр действия ограничивается грамположительными бактериями. Их используют при резистентности или аллергии к бета-лактамам, при псевдомембранозном колите, вызываемом Clostridium difficile.

АМИНОГЛИКОЗИДЫ - соединения, в состав молекулы которых входят аминосахара. Первый препарат — стрептомицин — был получен в 1943 г. Ваксманом как средство для лечения туберкулеза.

Сейчас различают несколько поколений препаратов: (1) стрептомицин, канамицин и др. (2) гентамицин, (3) сизомицин, тобрамицин и др. Препараты бактерицидны, спектр действия — широкий (особенно активны против грамотрицательных бактерий, действуют на некоторых простейших).

ТЕТРАЦИКЛИНЫ - это семейство крупномолекулярных препаратов, имеющих в своем составе четыре цикличных соединения. В настоящее время, в основном, применяют полусинтетики, например доксициклин. Тип действия — статический. Спектр действия — широкий (особенно часто используются для лечения инфекций, вызванных внутриклеточно расположенными микробами: риккетсиями, хламидиями, микоплазмами, бруцеллами, легионеллами).

МАКРОЛИДЫ (и азалиды) - это семейство больших макроциклических молекул. Эритромицин - наиболее известный и широко используемый антибиотик. Более новые препараты: азитромицин, кларитромицин (их можно применять всего 1-2 раза в сутки). Спектр действия — широкий, включая внутриклеточные микроорганизмы, легионеллы, гемофильную палочку. Тип действия - статический (хотя, в зависимости от вида микроба, может быть и цидным).

ЛИНКОЗАМИДЫ (линкомицин и его хлорированный дериват — клиндамицин). Бактериостатики. Спектр их действия похож на макролиды, клиндамицин особенно активен против анаэробов.

ЛЕВОМИЦЕТИН (ХЛОРАМФЕНИКОЛ) имеет в составе молекулы нитробензеновое «ядро», которое, к сожалению, делает препарат токсичным не только в отношении бактерий, но для клеток организма человека. Статический тип действия. Спектр действия - широкий, включая внутриклеточных паразитов.

РИФАМИЦИНЫ (рифампицин). В основе препарата - крупная молекула со сложной структурой. Тип действия - бактерицидный. Спектр действия - широкий (в том числе внутриклеточные паразиты; очень эффективны против микобактерий). Сейчас применяют в основном только для лечения туберкулеза.

ПОЛИПЕПТИДЫ (полимиксины). Спектр антимикробного действия - узкий (грамотрицательные бактерии), тип действия - бактерицидный. Очень токсичны. Применение - наружное; в настоящее время не используются.

ПОЛИЕНЫ (амфотерицин В, нистатин и др.). Противогрибковые препараты, токсичность которых достаточно велика, поэтому применяются чаше местно (нистатин), а при системных микозах препарат выбора — амфотерицин В.

Антибактериальные средства. Антибактериальные препараты. Антибиотики. Классификация антибиотиков.

К антибактериальным химиотерапевтическим средствам относят антибиотики, сульфаниламидные препараты, синтетические антибактериальные средства различного химического строения, противосифилитические и противотуберкулёзные средства. Структуры бактериальной клетки. служащие мишенями для основных антибактериальных химиотерапевтических препаратов, представлены на рис. 9-1.

Рис. 9-1. Мишени основных химиотерапевтических препаратов в бактериальной клетке (пояснения в тексте).

Антибиотики

Ранее было указано, что различные организмы, реализуя антагонистические взаимодействия в биоценозах, выделяют БАВ (антибиотики. бактериоцины), подавляющие жизнедеятельность своих конкурентов.

Антибиотики [от греч. anti- против, + biosis, жизнь] — химические вещества биологического происхождения, избирательно тормозящие рост и размножение или убивающие микроорганизмы.

Классификация антибиотиков

Антибиотики классифицируют и характеризуют по их происхождению, химической структуре, механизму действия, спектру активности, частоте развития лекарственной устойчивости и т.д.

Тип продуцента антибиотика. В соответствии с типом продуцента выделяют антибиотики. синтезируемые грибами (например, бензилпенициллин, гризеофульвин, цефалоспорины), актиномицетами (например, стрептомицин, эритромицин) и бактериями (например, полимиксины).

Способы получения антибиотиков. • биосинтетические (природные) антибиотики. их продуцентами выступают специальные штаммы микроорганизмов; • полусинтетические антибиотики. получаемые химическим соединением природного антибиотика, точнее его «ядра», с различными химическими радикалами (при этом возможно направленное создание препаратов с заданными свойствами); • синтетические антибиотики. источник их получения — химический синтез, возможный после определения структуры природных препаратов (например, синтетическим путём получают левомицетин). Механизм действия. Антибиотики подавляют различные процессы: синтез компонентов клеточной стенки, функции ЦПМ, синтез белка, транскрипцию и синтез нуклеиновых кислот микроорганизмов.

Источники: http://mydocx.ru/11-105859.html, http://medlec.org/lek2-1304.html, http://meduniver.com/Medical/Microbiology/167.html

Комментариев пока нет!

sovetymedikov.ru

45.Классификация антибиотиков по происхождению и спектру действия.

Классификация по происхождению

  1. Антибиотики, полученные из грибов, например рода Penicillium(пенициллин), родаCephalosporium(цефалоспорины).

  2. Антибиотики, полученные из актиномицетов; группа включает около 80% всех антибиотиков. Среди актиномицетов основное значение имеют представители рода Streptomyces, являющиеся продуцентами стрептомицина, эритромицина, левомицетина.

  3. Антибиотики, продуцентами которых являются собственно бактерии. Чаще всего с этой целью используют представителей рода BacillusиPseudomonas. Примерами антибиотиков данной являются полимиксины, бацитрацины, грамицидин.

  4. Антибиотики животного происхождения; из рыбьего жира получают эктерицид, из молок рыб – экмолин, из эритроцитов – эритрин.

  5. Антибиотики растительного происхождения. К ним можно отнести фитонциды, которые выделяют лук, чеснок, сосна, ель, сирень, другие растения. В чистом виде они не получены, так как являются чрезвычайно нестойкими соединениями. Антимикробным действием обладают многие растения, например, ромашка, шалфей, календула.

Классификация п спектру действия

.Спектром действия антибиотика называют набор микроорганизмов, на которые антибиотик способен оказывать влияние. В зависимости от спектра действия антибиотики могут быть:

1)влияющие преимущественно на грамположительные микроор-

ганизмы (бензилпенициллин, эритромицин);

2) влияющие преимущественно на грамотрицательные микроор-

ганизмы (уреидопенициллины, монобактамы);

3)широкого спектра действия (тетрациклины, аминогликозиды)

4)противотуберкулёзные антибиотики (стрептомицин, рифампи-

цин);

5)противогрибковые антибиотики (нистатин, грамицидин);

6)антибиотики, влияющие на простейших (трихомицин,метронидазол,тетрациклины);

7)противоопухолевые антибиотики (адриамицин, оливомицин).

46.Классификация антибиотиков по источнику получения.Способы получения.

По способу получения.

1. Биосинтетические (природные). Получают биосинтетически, путем культивирования микроорганизмов-продуцентов на специальной питательной среде при сохранении стерильности, оптимальной температуре, аэрации.

2. Полусинтетические продукты модификации молекул: получают присоединением к аминогруппе различных радикалов. Оксациллин относится к препаратам 1 поколения и имеет менее широкий спектр действия, чем ампициллин относящийся к препаратам 2-3 поколения. Известно множество полусинтетических цефалоспоринов.

3. Синтетические (получают путем химического синтеза)К ним относятся сульфаниламиды, производные хинолона ,производные нитрофурана.

Химиотерапевтическая активность сульфаниламидных препаратов впервые была обнаружена в 1935 г. немецким врачом и исследователем Г. Домагком.Впоследствии на основе молекулы сульфаниламида было синтезировано большое количество его производных, из которых часть получила широкое применение в медицине. Синтез различных модификаций сульфаниламидов осуществлялся в направлении создания более эффективных, продолжительно действующих и менее токсичных препаратов.За последние годы использование сульфаниламидов в клинической практике снизилось, поскольку по активности они значительно уступают современным антибиотикам и обладают сравнительно высокой токсичностью. Кроме того, в связи с многолетним, часто бесконтрольным и неоправданным применением сульфаниламидов большинство микроорганизмов выработало к ним резистентность.

Способы полученияВ настоящее время различают три способа получения антибиотиков: биологический, метод получения полусинтетических препаратов и синтез химических соединений — аналогов природных антибиотиков.

1. Биологический синтез. Одним из главных условий получения антибиотика в большом количестве является продуктивность штамма, поэтому используются наиболее продуктивные мутанты «диких штаммов», полученные методом химического мутагенеза. Продуцент выращивают в жидкой оптимальной среде, в которую и поступают продукты метаболизма, обладающие антибиотическими свойствами. Антибиотики, находящиеся в жидкости, выделяют, используя ионообменные процессы, экстракцию или растворители. Определение активности антибиотика в основном производится микробиологическими методами с использованием чувствительных тест-микробов. За Международную единицу активности антибиотика (ЕД) принимают специфическую активность, содержащуюся в 1 мкг чистого препарата пенициллина Международная единица активности равна 0,6 мкг.

2. Полусинтетические антибиотики. Их готовят комбинированным способом: методом биологического синтеза получают основное ядро молекулы нативного антибиотика, а методом химического синтеза, путем частичного изменения химической структуры — полусинтетические препараты.

Большим достижением является разработка метода получения полусинтетических пенициллинов. Методом биологического синтеза было извлечено ядро молекулы пенициллина — 6-аминопенициллановая кислота (6-АПК), которая обладала слабой антимикробной активностью. Путем присоединения к молекуле 6-АПК бензильной группы созданбензилпенициллин, который теперь получают и методом биологического синтеза. Широко применяемый в медицине под названием пенициллин, бензилпенициллин обладает сильной химиотерапевтической активностью, но активен лишь в отношении грамположительных микробов и не действует на, устойчивые микроорганизмы, особенно стафилококки, образующие фермент — р-лактамазу. Бензилпенициллин быстро теряет свою активность в кислой и щелочной средах, поэтому его нельзя применять перорально (он разрушается в желудочно-кишечном тракте).

Другие полусинтетические пенициллины: метициллин (Meticillin) — применяется для лечения инфекций, вызванных устойчивыми к бензилпенициллину стафилококками, так как не разрушается под действием фермента — (3-лактамазы; оксациллин (Oxacillin) — устойчив к кислой среде, поэтому его можно применять внутрь; ампициллин — задерживает размножение не только грамположительных, но и грамотрицательных бактерий (возбудителей брюшного тифа, дизентерии и др.).

Полусинтетические препараты получают также на основе 7-аминоцефалоспориновой кислоты (7-АЦК). Производные 7-АЦК: цефалотин (Cefalotin), цефалоридин (Сеfaloridinum) не дают аллергических реакций у лиц, чувствительных к пенициллину. Получены и другие полусинтетические антибиотики, например рифампицин (Rifampicinum) — эффективный противотуберкулезный препарат.

3. Синтетические антибиотики. Изучение химической структуры антибиотиков дало возможность получать их методом химического синтеза. Одним из первых антибиотиков, полученных таким методом, был левомицетин. Большие успехи в развитии, химии привели к созданию антибиотиков с направленно измененными свойствами, обладающих пролонгированным действием, активных в отношении устойчивых к пенициллину стафилококков. К пролонгированным препаратам относятся экмоновоциллин (Ecmonovocillinum), бициллин 1,3,5.

По спектру действия все антибиотики принято классифицировать на антибактериальные, антигрибковые и противоопухолевые.

Антибактериальные антибиотики угнетают развитие бактерий. Существуют антибиотики узкого спектра действия, которые угнетают рост только грамположительных или грамотрицательных бактерий (например, полимиксин (Polymyxin) и др.), и антибиотики широкого спектра, которые угнетают рост как грамположительных, так и грамотрицательных бактерий. К антибиотикам широкого спектра относятся беталактамиды, составляющие группу, в которую входят пенициллины и цефалоспорины. Основу молекул этих антибиотиков составляет бета-лактамное кольцо. Они обладают следующими свойствами: бактерицидный тип действия, высокая токсичность в отношении грамположительных микробов, быстрое наступление антибактериального эффекта и хорошая переносимость макроорганизмом, даже при длительном применении. В эту группу входят биосинтетические пенициллины, полусинтетические пенициллины, действующие на грамположительные микробы, и полусинтетические пенициллины и цефалоспорины с широким спектром действия.

Тетрациклины — группа антибиотиков широкого спектра действия, в которую входят природные антибиотики (тетрациклин, окситетрациклин и др.) и их полусинтетические производные.

studfiles.net

III. Классификация антибиотиков по спектру биологического действия

1. АБ узкого спектра действия, активные преимущественно в отношении Гр (+) микроорганизмов ( природные пенициллины и цефалоспорины, макролидыграмицидины и т.д.).

2. АБ узкого спектра действия, активные преимущественно в отношении Гр (-) микроорганизмов (полимиксины,амидинопенициллины - пивмециллин,мециллинам).

3. АБ широкого спектра действия ( полусинтетические пенициллины, полусинтетические цефалоспорины,карбопененмы, монобактамы,тетрациклины,аминогликозиду, хлорамфеникол).

4.Противотуберкулезные антибиотики (стрептомицин, канамицин,циклосерин,рифампицин).

5. Противогрибковые АБ (нистатин, гризеофульвин, амфотерицин В).

6. Противоопухолевые АБ ( актиномицин С, митомицин С, оливомицин,брунеомицин, дауномицин,рубомицины).

2.3 Общие принципы антибиотикотерапии.

В настоящее время используются 3 вида лечения антибиотиками:

1. Профилактическое лечение. Целью этого вида антибиотикотерапии является предупреждение развития инфекции. Примерами такого рода профилактического лечения является назначение антибиотиков после операции, сезонная профилактика ревматизма и предотвращение эпидемических заболеваний.

2. Эмпирическое или начальное лечение. Это раннее назначение антибиотиков до получения результатов посевов и результатов чувствительности. При острых инфекциях нельзя откладывать назначение антибиотиков до получения результатов микробиологических исследований и антибиотик назначают на эмпирической основе (гр. эмпириос-опыт). Во многих случаях известен наиболее вероятный возбудитель и антибиотики, которые действуют на него. Например, типичная пневмония чаще всего вызывается пневмококком, который хорошо подавляется пенициллином.

3. Окончательное лечение. Оно вводится, когда становятся известными результаты посевов и вид возбудителя, чувствительность его к антибиотикам. Антибиотик назначается в соответствии с результатами этого исследования.

К общим принципам, определяющим эффективность антибиотикотерапии, относятся следующие:

1) диагноз должен быть настолько точным, насколько это возможно, что помогает определить очаг инфекции, возбудителя и его чувствительность к препарату;

2) назначение наиболее оптимального антибиотика (препараты выбора или антибиотики 1-ого ряда);

3) введение необходимых доз препарата с оптимальной частотой и наиболее подходящим способом;

4) лечение нельзя продолжать после отсутствия эффективности в первые 2-3 дня, в этом случае назначается антибиотик резерва или препарат 2-ого ряда;

5) лечение после исчезновения клинических симптомов продолжается еще в течение 3-5 дней;

6) лечение антибиотиками курсовое, длительность его зависит от вида возбудителя и тяжести инфекции;

7) назначение комбинаций антибиотиков, что позволяет достигнуть следующих эффектов: расширить спектр антибактериального действия за счет 2-ого или последующих препаратов; усилить антимикробный эффект; снизить вероятность развития резистентности к бактериям; уменьшить частоту побочных эффектов.

Основными показаниями к назначению комбинаций антибиотиков являются:

1)полиинфекции, вызванные несколькими микроорганизмами (большинство хирургических инфекций являются полиинфекциями);

2)для предотвращения вероятности развития лекарственной устойчивости, особенно при длительных курсах антибиотикотерапии (например, лечение туберкулеза);

3) для потенцирования действия, то есть для достижения эффекта, который невозможно получить при применении только одного препарата.

www.studfiles.ru

Основные механизмы микробного антагонизма.

  1. Конкуренция за питательные вещества.

  2. Конкуренция за кислород.

  3. Изменения рН в сторону, неблагоприятную для конкурента.

  4. Синтез химических веществ (антибиотиков), которые подавляют рост и размножение.

Классификация антибиотиков по происхождению.

В зависимости от источника получения различают 6 групп антибиотиков:

  1. Антибиотики, полученные из грибов, например рода Penicillium(пенициллин), родаCephalosporium(цефалоспорины).

  2. Антибиотики, полученные из актиномицетов; группа включает около 80% всех антибиотиков. Среди актиномицетов основное значение имеют представители рода Streptomyces, являющиеся продуцентами стрептомицина, эритромицина, левомицетина.

  3. Антибиотики, продуцентами которых являются собственно бактерии. Чаще всего с этой целью используют представителей рода BacillusиPseudomonas. Примерами антибиотиков данной являются полимиксины, бацитрацины, грамицидин.

  4. Антибиотики животного происхождения; из рыбьего жира получают эктерицид, из молок рыб – экмолин, из эритроцитов – эритрин.

  5. Антибиотики растительного происхождения. К ним можно отнести фитонциды, которые выделяют лук, чеснок, сосна, ель, сирень, другие растения. В чистом виде они не получены, так как являются чрезвычайно нестойкими соединениями. Антимикробным действием обладают многие растения, например, ромашка, шалфей, календула.

1 – 5 группы – природные антибиотики.

  1. Синтетические и полусинтетические антибиотики.

Классификация антибиотиков по механизму действия на микробную клетку.

  1. Ингибиторы синтеза компонентов клеточной стенки.

              1. Ингибиторы сборки и пространственного расположения молекул пептидогликана.

Пенициллины и цефалоспорины связывают и инактивируют транспептидазы (пенициллинсвязывающие белки), препятствуя нормальной сборке молекул пептидогликанов.

              1. Ингибиторы синтеза пептидогликанов.

Ванкомицин, циклосерин и бацитрацин ингибируют активность промежуточных предшественников синтеза клеточной стенки.

  1. Препараты, нарушающие функции цитоплазматической мембраны микроорганизмов.

Полимиксины– бактерицидное действие связано с нарушением осмотической резистентности цитоплазматической мембраны.

Полиеновыеантибиотики (нистатин, леворин, амфотерицин) используются какпротивогрибковые препараты; механизм действия – связывание эргостерола цитоплазматической мембраны с последующим выходом низкомолекулярных соединений из клетки.

Грамицидинывызывают нарушение целостности цитоплазматической мембраны.

  1. Ингибиторы синтеза белка.

Самая многочисленная и разнообразная по химической структуре группа антибиотиков. Основной механизм действия большинства препаратов – нарушение функциональных свойств рибосом.

Аминогликозидыреагируют с 30S-субъединицей рибосомы, образуя необратимый комплекс с одним из рибосомальных белков. Тем самым блокируются функции рибосом в целом.

Известны 3 пути нарушения синтеза белка

  • Блокируется формирование пептидных связей, что опосредует основной путь реализации бактерицидного действия.

  • Блокируется взаимодействие транспортной РНК с комплексом матричная РНК–рибосома.

  • Появляются дефектные полипептиды вследствие искажения кода матричной РНК и нарушения считывания генетической информации.

Тетрациклиныоказывают бактериостатическое действие. Механизм действия: взаимодействие с бактериальными 30Sрибосомами с последующим блокированием присоединения транспортной РНК к комплексу рибосома – матричная РНК и нарушением встраивания новых аминокислот в полипептидную цепь.

В настоящее время природные тетрациклины (хлортетрациклин, окситетрациклин) практически не применяются, их вытеснили полусинтетические препараты (доксициклин).

Левомицетин– единственный природный антибиотик, молекула которого содержитнитробензен, опосредующий еготоксичность для клеток бактерий и млекопитающих. Действие бактериостатическое. Механизм действия: взаимодействие с 50Sсубъединицей рибосомы с последующим ингибированием активности пептидилтрансферазы, ответственной за образование пептидных связей.

Макролидысодержат макроциклическое лактонное кольцо с присоединенными комбинациями необычных сахаров (аминосахара, безазотистые сахара). Природные макролиды: эритромицин, олеандомицин, в настоящее время становятся популярными полусинтетические макролиды – рокситромицин и другие.

Действие бактериостатическое, механизм действия – подавление пептидилтрансферазной активности.

  1. Ингибиторы транскрипции и синтеза нуклеиновых кислот, включают вещества, подавляющие синтез ДНК (репликацию) и РНК (транскрипцию).

Хинолоны– антибактериальные препараты широкого спектра действия; механизм активности опосредован ингибированием топоизомеразы (ДНК-гиразы), что препятствует спирализации молекулы ДНК.

Производные нитроимидазола (метронидазол)проявляют селективный бактерицидный эффект в отношении некоторых анаэробов и простейших. Механизм действия – восстановление нитрогрупп препарата в нитрозогидроксиламиногруппы путем переноса электронов, осуществляемое белком, аналогичным ферредоксину теплокровных. Подобное превращение препятствует выходу метронидазола из клетки и приводит к накоплению его в концентрациях, в 10-100 раз превышающих таковые во внеклеточной среде. Депонированный метаболит вызывает множественные нарушения структуры ДНК.

Ингибиторы синтеза РНК (транскрипции) – рифамицины.Молекула рифамицина содержит бициклическую структуру с длинным алифатическим мостиком и нитрифицированной боковой цепью. Действие бактерицидное, опосредовано ингибированием ДНК-зависимой РНК-полимеразе.

  1. Ингибиторы синтеза нуклеотидов составляют большую группу антимикробных агентов; механизм действия связан с ингибированием синтеза фолиевой кислоты за счет нарушения метаболизма пуринов и пиримидинов. Бактериостатическое действие.

Сульфаниламиды– механизм действия – подавление синтеза тимидина и всех пуринов. Препараты – структурные аналоги парааминобензойной кислоты, связывают дигидроптероатсинтетазу, препятствуя образованию интермедиаторов синтеза фолиевой кислоты, служащей коферментом в переносе атома углерода между молекулами.

Диаминопиримидины. Химическая структура препаратов аналогична птеридиновой части фермента (редуктазы), катализирующего восстановление дигидрофолиевой кислоты в тетрагидрофолиевую. Механизм активности направлен на ингибирование синтеза тимидина и пуринов.

Применяется триметоприм, который является структурным аналогом дигидрофолиевой кислоты и связывает дигидрофолатредуктазу. Комбинация триметоприм – сульфаметоксазол (бисептол) оказывает бактерицидное действие, хотя оба компонента – бактериостатики.

Антибиотикдолжен отвечать следующимтребованиям:

              1. При низкой концентрации (10-30 мкг/мл) должен подавлять рост или убивать возбудителя болезни.

              2. Антибиотик должен активно воздействовать на микроорганизмы, чтобы за короткий срок прервать его жизненный цикл.

              3. Активность антибиотика не должна существенно снижаться под действием биологических жидкостей организма.

              4. Антибиотик не должен вредить макроорганизму.

              5. Антибиотик не должен снижать иммунные реакции.

              6. Антибиотик не должен препятствовать выздоровлению.

Существуют 3 условия, при которых антибиотик может оказать бактерицидное или бактериостатическое действие на микробную клетку:

  • Антибиотик должен проникнуть в клетку.

  • Антибиотик должен вступить во взаимодействие с так называемой мишенью, т.е. структурой, которая выполняет важную для жизнедеятельности бактерий функцию (например, бактериальной рибосомой, ДНК и др.) и подавить эту функцию.

  • Антибиотик должен при этом сохранить свою структуру.

Если одно из этих условие не выполняется, бактерия приобретает устойчивость.

При передаче генетической информации клетка приобретает гены, ответственные за синтез тех или иных ферментов, в результате в клетке происходит изменение обычных биохимических реакций и нарушаются условия, необходимые для действия антибиотика.

studfiles.net


Смотрите также